翻訳と辞書
Words near each other
・ Gersdorffite
・ Gersekarát
・ Gersem of Axum
・ Gersemi
・ Gersemia
・ Gersemia rubiformis
・ Gersey
・ Gersfeld
・ Gersh
・ Gersh Budker
・ Gersh Kuntzman
・ Gershayim
・ Gershayim (trope)
・ Gersheim
・ Gershenzon
Gershgorin circle theorem
・ Gershkovich
・ Gershman
・ Gershom
・ Gershom (disambiguation)
・ Gershom ben Judah
・ Gershom Browne
・ Gershom Bulkeley
・ Gershom Carmichael
・ Gershom Cox
・ Gershom Craft House
・ Gershom Cutter House
・ Gershom Durgin House
・ Gershom Gorenberg
・ Gershom Hyde House


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gershgorin circle theorem : ウィキペディア英語版
Gershgorin circle theorem
In mathematics, the Gershgorin circle theorem may be used to bound the spectrum of a square matrix. It was first published by the Soviet mathematician Semyon Aronovich Gershgorin in 1931. The spelling of S. A. Gershgorin's name has been transliterated in several different ways, including Geršgorin, Gerschgorin, Gershgorin and Hershhorn/Hirschhorn.
==Statement and proof==
Let A be a complex n\times n matrix, with entries a_\,. For i \in\ let R_i = \sum_\right| be the sum of the absolute values of the non-diagonal entries in the i-th row. Let D(a_, R_i ) be the closed disc centered at a_ with radius R_i. Such a disc is called a Gershgorin disc.
Theorem: Every eigenvalue of A lies within at least one of the Gershgorin discs
D(a_,R_i)
''Proof'': Let \lambda be an eigenvalue of A and let x = (''x''''j'') be a corresponding eigenvector. Let ''i'' ∈  be chosen so that |''x''''i''| = max''j'' |''x''''j''|. (That is to say, choose i so that xi is the largest (in absolute value) number in the vector x) Then |''x''''i''| > 0, otherwise x = 0. Since x is an eigenvector, A x=\lambda x, and thus:
: \sum_j a_ x_j = \lambda x_i \quad \forall i \in \.
So, splitting the sum, we get
: \sum_ a_ x_j = \lambda x_i - a_ x_i.
We may then divide both sides by ''x''''i'' (choosing ''i'' as we explained, we can be sure that ''x''''i'' ≠ 0) and take the absolute value to obtain
: |\lambda - a_| = \left|\frac x_j}\right| \le \sum_ \left| \frac \right| \le \sum_ |a_| = R_i
where the last inequality is valid because
: \left| \frac \right| \leq 1 \quad \textj \neq i.
Corollary: The eigenvalues of ''A'' must also lie within the Gershgorin discs ''C''''j'' corresponding to the columns of ''A''.
''Proof'': Apply the Theorem to ''A''T.
Example For a diagonal matrix, the Gershgorin discs coincide with the spectrum. Conversely, if the Gershgorin discs coincide with the spectrum, the matrix is diagonal.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gershgorin circle theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.